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This paper introduces a new Grammar-Guided Genetic Programming algorithm for resolv-
ing multi-instance learning problems. This algorithm, called G3P-MI, is evaluated and com-
pared to other multi-instance classification techniques in different application domains.
Computational experiments show that the G3P-MI often obtains consistently better results
than other algorithms in terms of accuracy, sensitivity and specificity. Moreover, it makes
the knowledge discovery process clearer and more comprehensible, by expressing infor-
mation in the form of IF-THEN rules. Our results confirm that evolutionary algorithms
are very appropriate for dealing with multi-instance learning problems.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Multiple instance learning (MIL), introduced by Dietterich et al. [21], is a generalization of traditional supervised learning.
In MIL, training patterns called bags are represented as a set of feature vectors called instances. Each bag contains a number
of non-repeated instances and each instance usually represents a different view of the training pattern attached to it. There is
information about the bags and each one receives a special label, although the labels of instances are unknown. The problem
consists of generating a classifier that will correctly classify unseen bags of instances. The key challenge in MIL is to cope
with the ambiguity of not knowing which instances in a positive bag are actually positive examples, and which ones are
not. In this sense, a multiple instance learning problem can be regarded as a special kind of supervised learning problem with
incomplete labeling information.

This learning framework is receiving growing attention in the machine learning community because numerous real-
world tasks can be represented very naturally as multiple instance problems. These tasks include text categorization [3],
content-based image retrieval [68,43,70], image annotation [67,24], drug activity prediction [40,80], web index page recom-
mendation [77,69] and semantic video retrieval [13]. In order to resolve these problems, the literature abounds in a great
number of method proposals that range from algorithms designed specifically to solve multi-instance problems to exten-
sions of classical algorithms adapted to the MIL scenario. The latter include k-nearest neighbors, decision trees, rule based
systems, support vector machines, neural networks, inductive logic programming and ensembles.

This paper presents a framework for modifying and extending evolutionary algorithms (EAs) to deal with MIL problems.
One extension of these algorithms, based on Grammar-Guided Genetic Programming (G3P), is designed and implemented;
the resulting algorithm is called G3P-MI. It is evaluated, analyzed and compared to other MIL classification techniques in a
collection of multi-instance datasets. Experimental results show that G3P-MI often obtains consistently better results than
other algorithms in several applications. Moreover, it adds comprehensibility and clarity to the knowledge discovery process,
. All rights reserved.
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expressing information in the form of IF-THEN prediction (classification) rules. These results show that EAs are a promising
tool for solving MIL problems.

In summary, the key points of this paper are: to introduce evolutionary algorithms to solve MIL; to study the effectiveness
of our algorithm (G3P-MI) in obtaining classification accuracy and a high degree of discovered knowledge (comprehensible
rules); to present an empirical comparison between different data sets using different algorithms; and to provide data sets to
facilitate future comparisons in this area. The last two points are very relevant to forward real progress in MIL because they
allow different methods to be compared under the same conditions. Currently, this is the greatest weakness found in studies
on MIL because, although a wide range of problem domains have been researched using a broad spectrum of approaches,
extensive comparisons of algorithms are infrequent; most studies empirically compare only a few approaches and use only
a few data sets to do so (often only one).

The paper is structured as follows. Section 2 briefly reviews advances in the area of multiple instance learning. Section 3
describes the proposed algorithm. Section 4 evaluates and compares our algorithm to other techniques implemented in the
WEKA tool in ten datasets. Finally, Section 5 draws some conclusions and raises several issues for future work.
2. Antecedents

This section gives a definition and a notation of MIL and reviews the most important developments in MIL in recent years.
2.1. Definition and notation of multiple instance learning

MIL is designed to solve the same problems as single-instance learning: learning a concept that correctly classifies train-
ing data as well generalizing unseen data. Although the actual learning process is quite similar, the two approaches differ in
the class labels provided which are what they learn from. In a traditional machine learning setting, an object mi is repre-
sented by a feature vector vi, which is associated with a label f(mi). However, in the multiple instance setting, each object
mi may have Vi various instances denoted mi;1;mi;2; . . . ;mi;v i

. Each of these variants will be represented by a (usually) distinct
feature vector V(mi,j). A complete training example is therefore written as ðfVðmi;1Þ;Vðmi;2Þ; . . . ;Vðmi;v i

Þg; f ðmiÞÞ.
The goal of learning is to find a good approximation to the function f(mi), f̂ ðmiÞ, analyzing a set of training examples and

labeled as f(mi). To obtain this function Dietterich defines a hypothesis that assumes that if the result observed is positive,
then at least one of the variant instances must have produced that positive result. Furthermore, if the result observed is neg-
ative, then none of the variant instances could have produced a positive result. This can be modelled by introducing a second
function g(V(mi,j)) that takes a single variant instance and produces a result. The externally observed result, f(mi), can then be
defined as follows:
f ðmiÞ ¼
1 if 9 jjgðVðmi;jÞÞ ¼ 1;
0; otherwise:

�

In the early years of multi-instance learning research, all multi-instance classification work was based on this
assumption, that is, that MIL formulations explicitly or implicitly encoded the assumption that a bag was positive if
and only if at least one of its instances was positive. This formulation is known as the standard multi-instance
hypothesis or Dietterich hypothesis. More recently, generalized multi-instance learning models have been formalized
where a bag is qualified to be positive if instances in the bag satisfy some sophisticated constraints other than simply
having at least one positive instance. Firstly, Weidmann et al. [59] defined three kinds of generalized multi-instance
problems, based on employing different assumptions of how the classification of instances classifications determine their
bag label. These definitions are presence-based MI, threshold-based MI, and count-based MI. Presence-based MI is defined in
terms of the presence of at least one instance of each concept in a bag (note that the standard hypothesis is a special
case of this assumption which considers just one underlying concept); threshold-based MI requires a certain number of
instances of each concept to be present simultaneously and count-based MI requires a maximum as well as a minimum
number of instances of a certain concept in a bag. Independently, Scott et al. [51] defined another generalized
multi-instance learning model in which a bag label is not based on the proximity of one single instance to one single
target point. Rather, a bag is positive if and only if it contains a collection of instances, each near one of a set of target
points.

Similarly, there has also been an extension of the definition of multi-instance problems which use outputs with discrete
values (in particular, binary). The first proposal to use real-valued labels was introduced by Amar et al. [2]. These problems,
known as multi-instance regression (MIR) problems, have drawn wide-spread attention. Ray and Page [48] modified regres-
sion for MIL by assuming that if an algorithm could identify the best instance in each bag, then straightforward regression
could be used to learn a labeling method for each instance (and then for each bag); Ramon and De Raedt [46] adapted inter-
nal labeling methods for neural networks to learn a function that used real-valued instances; Dooly et al. [22] presented
extensions of k-nearest neighbors (k-NN), Citation-kNN, and the diverse-density algorithm for the real-valued setting and
studied their performance on boolean and real-valued data.
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2.2. Literature review of multiple instance learning

The first algorithms for learning from multiple instance examples were developed by Dietterich et al. [21] for drug activ-
ity prediction. Their algorithms, named axis-parallel rectangle (APR) methods [21], attempted to find an APR by expanding or
shrinking a hyperrectangle in the instance feature space, thus maximizing the number of instances of positive bags enclosed
within the rectangle while minimizing the number of instances of negative bags within the rectangle. A bag was classified as
positive if at least one of its instances fell within the APR; otherwise, the bag was classified as negative.

Following the basic idea of Dietterich et al.’s work, an extensive number of theoretical studies have appeared that have
contributed much to multi-instance learning. Long and Tan [37] initiated the investigation of the PAC-learnability of axis-
parallel rectangles within the multi-instance learning framework. They described a high-order polynomial-time theoretical
algorithm and showed that if the instances in the bags were independently drawn in product distribution, then the APR was
PAC-learnable. Auer et al. [5] showed that if the instances in the bags were not independent, then APR learning under the
multi-instance learning framework was NP-hard. Moreover, they also presented a theoretical algorithm that did not require
product distribution and that needed less time and sample complexity than Long and Tan’s algorithm. Later, this theoretical
algorithm was transformed into a practical algorithm named MULTINST [4]. Blum and Kalai [8] reduced the problem of PAC-
learning in the multi-instance learning framework to PAC-learning with one-sided or two-sided random classification noise.

From a practical standpoint, there are algorithms designed specifically for MIL, like Maron and Lozano’s diverse density
(DD) [40] well-known multi-instance learning algorithm proposal. In this algorithm, the diverse density of a point, p, in the
feature space is defined as a probabilistic measure contempling how many positive bags are near to an instance p, and how
far the negative instances are from p. This algorithm has been extended several times. Zhang and Goldman [75] combined it
with the expectation–maximization (EM) algorithm, EM-DD, a general-purpose MI algorithm whose basic idea is to see
which instance corresponds to the label of the bag. For that, this information is dealt as a missing value and it is estimated
using the EM approach. Pao et al. [43] proposed an EM based learning algorithm to provide a comprehensive procedure to
maximize the measurement of DD in given multiple instances. However, since the conception of MIL, most research has dealt
with designing multiple instance learning algorithms focused on adapting standard supervised learning techniques to solve
multiple-instance problems. Currently, almost all popular machine learning algorithms have been applied to solve multiple
instance problems. In the lazy learning context, Wang and Zucker [58] proposed two alternatives, Citation-KNN and Bayes-
ian-KNN, which extend the k-nearest neighbour algorithm (KNN) to the MIL context. These algorithms defined a different
calculation of distance, referred to as Hausdorff distance, to measure the separation between bags. With respect to decision
trees and learning rules, Chevaleyre and Zucker [17] implemented the ID3-MI and RIPPER-MI, which are multi-instance ver-
sions of the decision tree algorithm ID3 and the rule learning algorithm RIPPER, respectively. At that time, Ruffo [50] pre-
sented a multi-instance version of the algorithm C4.5, which was called RELIC. Later, Zhou et al. [77] presented the
Fretcit-KNN algorithm, which is a variant of the Citation-KNN.

There are also contributions which extend standard neural networks to MIL. Ramon and De Raedt [46] presented a neural
network framework for MIL, followed by others who have further improved or extended it. For instance, Zhou and Zhang [79]
proposed BP-MIP, a neural network based multi-instance learner derived from the traditional backpropagation neural net-
work. This algorithm was improved by Zhang and Zhou [72] by adopting two different feature selection techniques (feature
scaling with diverse density and feature reduction with principal component analysis). After that, Zhang and Zhou [74]
designed a neural network multi-instance learning algorithm called RBF-MIP which was derived from the popular radial ba-
sis function (RBF) methods. Chai and Yang [11] proposed a neural network algorithm for Multi-Instance Learning based on a
normalized RBF network defining a new kernel function for dealing with labeled bags. Another approach that has been
adapted to the MIL framework is the support vector machine (SVM). There are numerous proposals for this approach:
Gartner et al. [27] adapted kernel methods to work with MIL data by modifying the kernel distance measures to handle sets.
Using a similar approach, Chen and Wang [15] and Chen et al. [14] adapted SVMs by modifying the form of the data rather
than changing the underlying SVM algorithms, while Andrews et al. [3] adapted the SVM kernels directly to produce one of
the best MIL classification systems. Other studies that use this approach include those of Mangasarian and Wild [39] and Gu
et al. [30]. Finally, Xu and Frank [66], Zhang and Zhou [73] and Zhou and Zhang [80] show the use of ensembles to enhance
multi-instance learners.

Along with the multitude of adaptations carried out, there have also been numerous theoretical studies on the relation-
ship between supervised and multi-instance learning, and on the importance of considering special adaptations to appropri-
ately solve problems based on this learning. Ray and Craven [47] empirically studied the relationship between supervised
and multiple instance learning by comparing several MIL methods to their supervised counterparts. They observed that
straight-forward supervised learning techniques can outperform some specialized MIL approaches, although neither
approach is a clear winner. Zhou [76] showed that multi-instance learners can be derived from supervised learners by shift-
ing their focus from discrimination on the instances to discrimination on the bags. Recently, Zhou and Xu [78] have estab-
lished a bridge between MIL and semi-supervised learning showing that multi-instance learning can be viewed as a special
case of semi-supervised learning.

Finally, it is worth mentioning that MIL has also attracted the attention of the inductive logic programming (ILP) commu-
nity. De Raedt [45] showed that multi-instance problems could be regarded as a bias in inductive logic programming. He also
suggested that the multi-instance paradigm could be the key between propositional and relational representations, being
more expressive than the former, and much easier to learn than the latter. Zucker and Ganascia [81] presented REPEAT,
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an ILP system based on an ingenious bias which first reformulated relational examples in a multi-instance database, and then
induced the final hypothesis with a multi-instance learner. Later, Alphonse and Matwin [1] successfully employed
multi-instance learning to help relational learning, where the expressive power of relational representation and the ease
of feature selection in propositional representation are combined. This work confirms that multi-instance learning could
act as a bridge between propositional and relational learning.
3. G3P-MI

Genetic Programming (GP), introduced by Koza [33], is a learning methodology belonging to the family of evolutionary
computation (EC) [7]. Among successful EC implementations, GP retains a significant position due to such valuable charac-
teristics as: its great flexibility for representing solutions, the fact that a priori knowledge is not needed about the statistical
distribution of the data (data distribution free), data in their original form can be used to operate on them directly, unknown
relationships that exist among data can be detected and expressed as a mathematical expression and finally, the most impor-
tant discriminative features of a class can be revealed. These characteristics convert these algorithms into a paradigm of
growing interest both for obtaining classification rules [36,56], and for other tasks related to prediction, such as feature
selection [19,41] and the generation of discriminant functions [18,31]. There are other algorithms that use the GP paradigm
to evolve rule sets for different classification problems that are both two-class [52,64], and multiple-class [42,71] showing
that GP is a mature field that efficiently achieves low error rates in supervised learning and is still introducing improvements
into its methods [32]. These results suggest that it would be interesting to adapt this paradigm to multiple instance learning
and check its performance.

Our approach uses an extension of traditional GP systems, called Grammar-Guided Genetic Programming (G3P) [60]. G3P
facilitates the efficient automatic discovery of empirical laws and provides a more systematic way of handling typing. More
importantly, the G3P can constrain search space so that only grammatically correct individuals are generated. To achieve
these goals, G3P employs a context-free grammar which establishes a formal definition of the syntactical restrictions of
the problem to be solved and its possible solutions. As will be seen, the implementation of constraints using a grammar
can be a very natural way to express the syntax of rules when individual representation is specified. Specifically, our system
expresses the information in the form of IF-THEN classification rules which provide a natural extension for knowledge rep-
resentation. The comprehensibility of the knowledge discovered has been an area of growing interest and this comprehen-
sibility is currently considered to be just as important as obtaining high predictive accuracy. One of its significant
characteristics is that the user can understand the system’s results and combine them with his/her knowledge to make a
well-informed decision, rather than blindly trusting the incomprehensible output of a black box system. In this context,
our system has the advantage of being able to add comprehensibility and clarity to the knowledge discovery process.

The design of the system will be examined in more detail in continuation with respect to the following aspects: individual
representation, genetic operators, the fitness function and the evolutionary process.
3.1. Individual representation

In our approach, an individual represents IF-THEN rules. The IF part of the rule (antecedent) contains a logical combina-
tion of conditions about the values of predicting attributes, and the THEN part (consequent) contains the predicted class for
the concepts satisfied by the antecedent of the rule. This rule determines if a bag should be considered positive (that is, if it is
an instance of the concept to be represented) or negative (if it is not).

If (condB(bag)) then

bag is an instance of the concept.

Else
bag is not an instance of the concept.

End-If

where condB is a condition that is applied to the bag. Following the Dietterich hypothesis, condB can be expressed as:
1 Thi
condBðbagÞ ¼
_

8instance2bag

condIðinstanceÞ; ð1Þ
where _ is the disjunction operator, and condI is a condition that is applied to every instance contained in a given bag.1

Given that the only variable part in the last expressions is the condition that is applied to instances (that is, condI), the
individual genotype represents this part, while the phenotype represents the entire rule that is applied to the bags. Fig. 1
shows the grammar used to represent rules. These rules can be applied to a great number of learning problems and are used
in the experiments described in Section 4.
s expression is equivalent to the one used to define the concept of multi-instance rule coverage in the RIPPER-MI algorithm [16].



Fig. 1. Grammar used for representing individuals’ genotypes in G3P-MI.
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3.2. Initialization

The initialization process consists in generating a group of initial solutions (learning rules). This issue has received sur-
prisingly little attention in genetic programming literature [38]. Very few papers have appeared in reference to this subject
[38] since the Grow, Full and Ramped Half-and-half initial algorithms [33], and some posterior methods that select a re-
quested size and guarantee the generation of trees with the same or a smaller size [9,12].

Our algorithm employs a simple and commonly used approach to generate the initial population inspired by that defined
by Geyer-Shultz [29]. On the one hand, this process assures the generation of valid individuals because new individuals are
generated by executing the production rules of the language defined by context-free grammar. On the other hand, our ap-
proach guarantees that the syntax tree generated adopts the size set by the user between a maximum and minimum number
of derivations. Its performance consists of two steps: the first step selects a derivation value for the current individual (this
value will comprise from a minimum value to a maximum derivation value). The next step consists in deriving the produc-
tions to generate an individual with the number of fitted derivations. The process starts with the axiom of the grammar, then
chooses one of the available productions for this axiom. The same process continues, and derives the non-terminal symbols of
the consequent of the production executed until no more non-terminal symbols are obtained. The choice of the production to
generate new individuals is not made totally at random. In order to guarantee that the syntax tree generated is valid and uses
the appropriate number of derivations, the system calculates a selection probability for each symbol in the grammar accord-
ing to a specified number of derivations for that individual. This table of probabilities, although implying some computational
input, only has to be calculated once since it is saved with the rest of the structural information about the individuals.

3.3. Genetic operators

G3P-MI uses two genetic operators to generate new individuals in a given generation of the evolutionary algorithm. These
operators are based on selective crossover and selective mutation as proposed by Whigham [61], and their basic principles
and functioning are briefly described in this section.

3.3.1. Crossover operator
This operator creates new rules by mixing the contents of two parent rules. To do so, a non-terminal symbol is chosen at

random with uniform probability from among the available non-terminal symbols in the grammar and two sub-trees (one
from each parent) are selected whose roots coincide with the symbol adopted or with a compatible symbol.

The crossover operator presents several configuration parameters. On the one hand, a list of eligible symbols can be de-
fined in order to increase the probability of crossover for certain symbols and to decrease that probability for other symbols.
In this case, all non-terminal symbols (excepting the root symbol) have the same probability of being selected. On the other
hand, in order to reduce bloating, there is a parameter that defines the largest size possible for offspring generated in a cross-
over. If one of the new offspring surpasses this size, one of the two parents is randomly selected to pass, without modifica-
tion, to the next generation. If both offspring surpass this size or at least one of them does not contain a symbol compatible
with the chosen symbol, the crossover is aborted and both parents are reproduced, without modification, in the next gen-
eration. Fig. 2 shows how this operation is performed.

3.3.2. Mutation operator
Mutation is another of the most influential operators in the evolution process. This operator is thought to be responsible

for preventing the loss of genetic diversity in the population, which is highly significant in the genetic convergence process.
The mutation operator produces small random changes in an individual to engender a new offspring and continue the search
process. This operator randomly selects the node in the tree where the mutation is to take place. If the node is a terminal
node, it will be replaced by another compatible terminal symbol. More precisely, two nodes are compatible if they are der-
ivations of the same non-terminal.

When the selected node is a non-terminal symbol, the subtree underneath this node will substitute any other valid der-
ivation subtree as a result. For that reason, a new production of the grammar is derived for this non-terminal symbol. The



Fig. 2. Example of selective crossover.

Fig. 3. Example of selective mutation.
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procedure used to generate this subtree is the same as the one used to create new individuals and guarantees that the indi-
vidual does not exceed a maximum size.

As in the case of selective crossover, this operator presents two configuration parameters: on the one hand, the list of eli-
gible symbols as the root of the sub-tree to be mutated (in our case, all non-terminal symbols excepting the root symbol
could be chosen with uniform probability) and on the other hand, the largest size which can have the offspring. Fig. 3 shows
how this operation is performed.

3.4. Fitness function

The fitness function measures the effectiveness of the classifier. There are several measures to evaluate different compo-
nents of the classifier and determine the quality of each rule. Our fitness function combines two commonly used indicators,
namely sensitivity (Se) and specificity (Sp) [10,54]. Sensitivity is the proportion of cases correctly identified as meeting a cer-
tain condition and specificity is the proportion of cases correctly identified as not meeting a certain condition. When working
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with MIL, it is necessary to modify a few basic concepts in classification-rule evaluation. Thus, true positive (tp) represents the
number of examples where the rule predicts that the bag has a given class and the bag does have that class; false positive (fp)
is the number of examples where the rule predicts that the bag has a given class but the bag does not have it; true negative
(tn) is the number of examples that the rule predicts where the bag does not have a given class, and indeed the bag does not
have it; and finally, false negative (fn) is the number of examples where the rule predicts that the bag does not have a given
class but the bag does have it. With these definitions, sensitivity and specificity are explained as follows:
sensitiv ity ¼ tn

tn þ fp
; ð2Þ

specificity ¼ tp

tp þ fn
: ð3Þ
The goal of G3P-MI is to maximize both sensitivity and specificity at the same time. These two measurements evaluate
different and conflicting characteristics in the classification process. Thus, a sensitivity of 100% means that the test recog-
nizes all positive cases as such. Sensitivity alone does not tell us how well the test predicts other classes (that is, the negative
cases). In binary classification, this is the corresponding specificity test, or equivalently, the sensitivity for other classes. A
specificity of 100% means that the test recognizes all negative cases as such. Therefore, specificity alone does not clarify
how well the test recognizes positive cases. We also need to know the sensitivity of the test to the class, or equivalently,
the specificities to other classes. Our evaluation involves a simultaneous optimization of these two conflicting objectives
where a value of 1 in both measurements represents perfect classification. We have tried to build a fitness function combin-
ing the two measurements, endeavoring to optimize them simultaneously. Of all the combinations tested, the product is that
which produces the best results since it weighs both measurements equally, as well as penalizing those individuals with a
value of 0 in either of the above measurements. Moreover, this fitness function has the advantages of being simple and
returning a meaningful, normalized value in the range [0,1].
fitness ¼ sensitiv ity � specificity: ð4Þ
3.5. Evolutionary algorithm

The main steps of our algorithm are based on a classical generational and elitist evolutionary algorithm. Initially, a pop-
ulation of classification rules is generated following the procedure described in Section 3.2. Once the individuals are evalu-
ated with respect to their ability to solve the problem, the main loop of the algorithm is composed of the following
operations. The first step represents the parent selection phase where individuals are selected by means of binary tourna-
ments. Then, the recombination and mutation processes are carried out with a certain degree of probability. Once the off-
spring are obtained through the previous procedure, they are then evaluated. In the last operation, the population is
updated by direct replacement, that is, the resulting offspring replace the current population. To guarantee that the best indi-
vidual in the population is not lost during the updating process, the algorithm employs elitism.
Fig. 4. G3P-MI algorithm.
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Finally, there are two conditions for exiting from the main loop. On the one hand, the algorithm ends if the maximum
number of generations defined by the user is reached and, on the other hand, it also ends if the best individual in the pop-
ulation achieves the quality objectives indicated by the user. The general outline of our algorithm is shown in Fig. 4. Once the
algorithm has finished, the best individual (classification rule) obtained in the previous process is returned.
4. Experimental section

In this section, experiments have been carried out in various problem domains to evaluate the capabilities of the method
proposed and compare it to other MIL methods. Results of 16 algorithms on 10 data sets are reported with different param-
eter configurations are reported. The datasets used in the experiments represent a range of applications and all data sets to-
gether with their partitions are available to facilitate future comparisons with previous or new proposals. The algorithms
used for comparison are obtained from the WEKA data mining tool [63] and consider some of the most significant proposals
in this research field.

First, the application domains and the algorithms used for comparison are presented, followed by a brief description of
the experimental methodology. Finally, the groups of algorithms in the data sets are compared and the experimental results
are discussed.
4.1. Problem domains used in experiments

Although MIL is a relatively recent learning framework, the MIL setting has produced numerous and interesting applica-
tions in different domains which have improved considerably the previous results achieved with other learning frameworks
due to greater flexibility in their representation. In our experiments the ten data sets used consider drug activity prediction
[40,80], content-based image retrieval [68,67,43] and the well-known East–West challenge [28]. There are brief overviews of
the domains considered in our experiments, and of how multiple instance representation has been carried out in each case.
Detailed information about these datasets is summarized in Table 1.
4.1.1. Drug activity prediction
The prediction of drug activity was what motivated this application for MIL representation. The problem consists of deter-

mining whether a drug molecule will bind strongly to a target protein. Each molecule may adopt a wide range of shapes or
conformations. A positive molecule has at least one shape that can bind well (although it is not known which one) and a
molecule is negative when none of its shapes can make the molecule bind well. This problem could be represented in a very
natural way in a MIL setting: each molecule would be a bag and the conformations it can adopt would be the instances in
that bag. Dietterich et al. [21] provided two datasets for the drug activity prediction problem, Musk1 and Musk2. For these
two datasets, they showed that MIL approaches significantly outperform normal supervised-learning approaches which
ignore the multi-instance nature of MIL problems. Later, these datasets have been extensively used as benchmarks to eval-
uate and compare MIL methods; for this reason they are considered in our experiments.

The mutagenecity of molecules is another drug-activity prediction problem included in our experiments [53]. The predic-
tion of mutagenecity is considered a typical benchmark for first-order induction tools. The problem consists of predicting the
mutagenicity of the molecules, that is, to determine whether a molecule is mutagenic or non-mutagenic. The dataset for
mutagenesis [53] consists of 188 molecules, of which 125 are mutagenic (active) and 63 non-mutagenic (inactive). The
MIL perspective deals with three different transformations: mutagenesis-atoms where a bag contains all the atoms of a com-
pound molecule, mutagenesis-bonds where a bag contains all the atom-bond tuples of a compound molecule and mutagen-
esis-chains where a bag contains all the adjacent pairs in bonds of a compound molecule.
Table 1
General information about data sets.

Dataset ID Bags Attributes Instances Average Bag Size

Positive Negative Total

Musk1 Mus1 47 45 92 166 476 5.17
Musk2 Mus2 39 63 102 166 6598 64.69
Mutagenesis-atoms MutA 125 63 188 10 1618 8.61
Mutagenesis-bonds MutB 125 63 188 16 3995 21.25
Mutagenesis-chains MutC 125 63 188 24 5349 28.45

Elephant ImgE 100 100 200 230 1391 6.96
Tiger ImgT 100 100 200 230 1220 6.10
Fox ImgF 100 100 200 230 1320 6.60

EastWest EastW 10 10 20 24 213 10.65
WestEast WestE 10 10 20 24 213 10.65
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4.1.2. Content-based image retrieval and classification
Content-based image retrieval and classification make up another domain that uses MI representation. This problem in-

volves identifying the intended target object(s) in images. The main difficulty is that one image may contain multiple, pos-
sibly heterogeneous objects. Thus, the global description of a whole image is too coarse to achieve good classification and
retrieval accuracy. Even when relevant images are provided, it is still a thorny problem in the supervised learning setting
to identify which object(s) in the sample image is/are relevant. However, MIL settings are suitable for this type of problem;
each image can be treated as a bag of segments which are modeled as instances, and the concept point representing the tar-
get object can be learned through MIL algorithms. The experiments presented here consider data sets representing catego-
ries of animals [3], specifically elephants, foxes and tigers. Each data set consists of 100 images which contain the animal,
and another 100 images which contain other animals. The final goal is to distinguish between the images that do contain
the animal in question and those that do not.

4.1.3. East–West challenge
The well-known East–West Challenge [28] is originally an ILP problem inspired by a problem posed by Larson and Mil-

chalski [34]. The problem involves predicting whether a train is going east or west. A train (bag) contains a variable number
of cars (instances) that have different shapes and carry different loads (instance-level attributes). Since the standard MI
assumption is asymmetric and it is not clear whether an eastbound train or a westbound train can be regarded as a positive
example in the MI setting, two MI versions of the data are considered in our experiments. One is called East–West and con-
tains eastbound trains as positive examples, and the other is called West–East and contains westbound trains as positive
examples. A more detailed application can be found in [35].

4.2. Learning algorithms used for the experiments

The most relevant proposals presented to date are compared to determine whether our evolutionary algorithm is a more
interesting proposal in some domains than other approaches. This section describes the algorithms used in our experiments.

4.2.1. Methods based on diverse density
Diverse density (DD), proposed by Maron and Lozano-Perez [40], is perhaps the best known framework for MI learning.

Given a set of positive and negative bags, the idea behind this approach is to learn a concept that is close to at least one in-
stance in each positive bag, but far from all instances in all the negative bags. Thus, the concept must describe a region of
instance space that is not only dense in instances from positive bags, but also diverse in that it describes every positive
bag. The experimentation considers three algorithms based on classical diverse-density algorithms for MI learning.

� MIDD is the standard DD algorithm that maximizes bag-level likelihood using the noisy-or model at training time. The
class label of a new bag is assigned based on the class that receives maximum probability.
� MIEMDD is the expectation–maximization diverse density (EMDD) algorithm [75]. This algorithm combines the DD algo-

rithm with an iterative approach inspired by the expectation–maximization algorithm (EM). In each iteration, the most-
likely-cause model [40] is used to find the most likely target points based on the DD model that has been learned.
� MDD is a variant of the DD algorithm which computes bag-level class probability as the average of instance-level class

probabilities [65]. This probability is used both at training time, when the likelihood is maximized based on the gradient
descent, as well as at testing time, when a class label is assigned based on the class with maximum probability.

4.2.2. Methods based on logistic regression
Logistic regression is a popular machine learning method in standard single instance learning [47]. Our experiments con-

sider a Multiple Instance Logistic Regression algorithm MILR which adapts standard SI logistic regression to MI learning
assuming a standard single instance logistic model at the instance level and using its class probabilities to compute bag-level
class probabilities using the noisy-or model employed by DD. Because instance-level class labels are not known, MILR learns
the parameters of this MI logistic regression model by maximizing bag-level likelihood.

4.2.3. Methods based on support vector machines
The support vector machine (SVM) is a popular recent development within the machine learning and data mining com-

munities. There is an extensive number of adaptations of this approach to the MIL framework [3,55,75] whose results show
good performance in different applications. The experimentation involves the MISMO algorithm which replaces the SI kernel
function with an MI kernel (i.e. an appropriate similarity function that is based on bags of instances). MISMO uses the SMO
algorithm [44] for SVM learning in conjunction with an MI kernel [27].

4.2.4. Distance-based approaches
The k-nearest neighbor (k-NN) in a MIL framework was introduced by Wang and Zucker [58]. The main difference be-

tween the different proposals for nearest neighbor algorithms lies in the definition of the distance metrics used to measure
the distance between bags. Two schemes extensively employed are minimal Hausdorff distance and the Kullback–Leibler
distance. The experimentation considers:



Table 2
Parameter of G3P-MI algorithm.

Parameter Value

Population size 1000
Number of generations 100
Crossover probability 95%
Mutation probability 30%
Elitist probability 5%
Parent selector Binary tournament
Maximum tree depth 50
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� CitationKNN which is a nearest-neighbor-based approach for MI problems proposed by Wang and Zucker [58]. It measures
the distance between bags using Hausdorff distance. In contrast to standard nearest-neighbor learning, where only the
nearest neighbors of an example to be classified are taken into account, the classification process with CitationKNN con-
siders those examples in the training set where the example to be classified is the one nearest to both references and
citers.
� MIOptimalBall is based on the optimal ball method [6] and implements the idea of classification based on the distance to a

reference point. More specifically, this method attempts to find a ball in instance space so that all instances of all negative
bags are outside the ball and at least one instance of each positive bag is inside the ball.

4.2.5. Methods based on supervised learning algorithms
The category based on supervised learning algorithms considers methods involving algorithms that adapt single instances

to multiple instances. Three different methods are examined:

� MIWrapper is a method that simply assigns the class label of a bag to all its instances and then trains a single instance
algorithm on the resulting data [25]. With respect to prediction, estimates of instance-level class probability for the
instances in the bag to be classified are obtained from the single instance model; these predictions are then combined
(based on the arithmetic or geometric average, or the maximum).
� SimpleMI is a method that computes the summary statistics for a bag to get a single instance from it. Depending on the

option chosen, it computes the coordinate-wise geometric average, arithmetic average, or minimum and maximum (the
latter strategy is also used by the minimax kernel for the MISMO discussed above).
� Boosting is a popular method for improving the performance of so-called weak learners [26]. MIBoost [66] is an algorithm

inspired by AdaBoost that builds a series of weak classifiers using a single instance learner based on appropriately re-
weighted versions of the input data (all instances receive their bags’ labels). This method considers the geometric mean
of later instances inside a bag (arithmetic mean of log-posterior).

4.3. Experimental setting

The WEKA algorithms chosen to compare the effectiveness of our proposal are tested with some configurations accepted
by this software and commented upon in Section 5.1. On the other hand, our proposal, G3P-MI, has been implemented in the
JCLEC software [57] and its main parameters are shown in Table 2. All experiments are repeated with 10 different seeds and
the average results are shown in the results table.

All algorithms are tested using 10-fold stratified cross validation [49,62] on all data sets. Folds are constructed on bags, so
that every instance in a given bag appears in the same fold. The partitions of each data set are available at http:www.uco.es/
grupos/kdis/mil.

5. Results and discussion

This section discusses our experimental results and compares our method to different algorithms. The first section is ded-
icated to contrasting different configurations of each algorithm. The combinations of the main parameters that produce the
best results are obtained and this configuration is used for the global comparison of all the methods.

5.1. Results with other previously proposed algorithms

This first section of the experimental part studies different configurations of each algorithm considered. Thus, the most
significant attributes are customized and finally, the configuration that produces the best results is selected. The optimized
version of each algorithm is later used in the overall comparison of all the algorithms. In this way, the comparison is as equi-
table as possible.

In continuation there is a brief introduction of the variants of each algorithm evaluated. Among other configurations con-
sidered, it is important to highlight the use of different types of data preprocessing and various multi-instance scenarios. The

http://http:www.uco.es/grupos/kdis/mil
http://http:www.uco.es/grupos/kdis/mil
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two main hypotheses called standard and collective assumption relate the class labels of the instances in a bag (unknown
labels) with the class label of the bag. The former is defined only for two-class learning problems, with a positive and a neg-
ative class and it is corresponded with the definition of Dietterich et al. [21]. The underlying model is asymmetric because it
is assumed that a bag is labeled positive if and only if it contains at least one positive instance, and negative otherwise. In
contrast, in the latter model specified in [65], it is assumed that all individual instances within a bag contribute equally and
independently to the bag’s class label. All variations are evaluated in the 10-fold partitions previously mentioned. The Fried-
man test is used to compare different alternatives for each algorithm. The Friedman test [20] is a nonparametric test that
compares the average ranks of the algorithms, where the algorithm with the highest accuracy in one data set is given a rank
of 1 for that dataset, the algorithm with the next highest accuracy value has the rank of 2, and so on. Finally, the average
ranks of each algorithm are calculated for all data sets. These ranks reveal which algorithm obtains the best results out of
all the data sets. In this way, the algorithm with the value closest to 1 indicates the best algorithm in most data sets. Accord-
ing to this test, if the null-hypothesis is accepted, all the algorithms are considered to be equivalent. On the other hand, if the
null-hypothesis is rejected, there are significant differences between considered algorithms. Table 3 shows the configura-
tions of each algorithm and the ranking of the accuracy, sensitivity and specificity values in each configuration considering
the results on the ten datasets. The values for the Friedman test are shown in Table 4.

In continuation, the best configuration of each algorithm is discussed according to the values observed in the tables pre-
viously mentioned.

With respect to the MILR algorithm, two variants of collective assumptions are considered. The Friedman test determines
that there are no significant differences among them. However, the best average values are obtained by the use of an arith-
metic mean, which is why this configuration is selected. With respect to the MIOptimalBall algorithm, three variants with dif-
ferent filter types are considered for transforming the training data. The Friedman test determines that there are no
significant differences among them, although the best average values are obtained by the use of normalized training data.
With respect to the MISMO algorithm, four variants are considered with different combinations of kernels and according to
whether the MIMinimax feature space is used or not. Again, the Friedman test determines that there are no significant dif-
ferences between them. This shows that it is a reliable method independent of the kernel type and the use of minimax. Fi-
nally, the RBF kernel without minimax is found to be the option with the best values and therefore this configuration is
selected. With respect to the MIWrapper algorithm, five significant learning methods are considered for resolving problems
in single instance learning, including rule based systems (PART), support vector machine machines, two variants of ensem-
bles and bayesian classifiers. Each method is evaluated by three different prediction methods, arithmetic and geometric
averages and maximum instance-level class probabilities. In this case the best prediction method is selected for each learn-
ing system. According to the Friedman test, there are significant differences between different prediction methods. Normally,
the best methods are arithmetic or geometric averages.

With respect to the MISimple algorithm, the effect of using different single instance learners as base learners is evaluated,
including the consideration of AdaBoost and PART methods. Each method is evaluated with three different bag summariza-
tion methods using the arithmetic, geometric or minimum and maximum per-bag mean of each attribute. The Friedman test
determines that the algorithms do not present significant differences. This means that transformed multi-instance methods
are independent. However, the arithmetic average obtains the best results in the two learning methods which is why it is
selected. With respect to the MIBoost algorithm, the four variants considered have different combinations of base learners
and a maximum number of boost iterations. The Friedman test determines that this algorithm is not related to either the
classifier or to the increase in the number of iterations. To select one variant, ten is the number of generations selected along
with the use of the tree-based classifier because this combination achieves the best average values for all the measurements.

5.2. Comparison of results

This section compares our method to the best configurations of algorithms described in the previous section. Table 5
reports on the average results of accuracy, sensitivity and specificity for all the algorithms in each data set. The Friedman
test [20] is done in order to more precisely evaluate the differences between the algorithms. The ranking of each algorithm
used by the Friedman test is shown in Table 6.

The best values for accuracy, at a value of 2.20, are obtained by our method while the next best algorithm values show a
much greater value. Concretely, the second algorithm that is based on the wrapper method, Bagging & PART, has a value of
5.25. These results confirm that our results are significantly better on average for all the data sets.

The results of Friedman test application are reported in Table 7. The Friedman test indicates that these results are signif-
icantly different both in accuracy and sensitivity measurements which prompted the performance of a post hoc test, the Bon-
ferroni–Dunn test [23], to find any significant differences occurring between algorithms. This post-test is not necessary in the
case of specificity because the Friedman test directly determines that there are no significant differences between the meth-
ods. Fig. 5a shows the application of this test on accuracy. This graphic represents a bar chart, whose values are proportional
to the mean rank obtained from each algorithm. If the lowest of these (the best algorithm) is added to the critical difference
value (CD value) of this test, a thicker horizontal line is obtained (denoted as Threshold) and those values that exceed this line
are algorithms with significantly worse results than the control algorithm (in this case the control algorithm is associated to
our proposal G3P-MI because it obtains the lowest ranking value). The threshold in this case is fitted to 9.445. Observing this
figure, the algorithms that do not exceed the threshold determined by Bonferroni are G3P-MI, some versions of wrapper and



Table 3
Experimental results of the configurations of each algorithm.

Algorithms based on logistic regression

Algorithm Configuration characteristics Ranking1

MI Assumptions Mean type for the posteriors Acc Se Sp

MILR (Type I) Collective Assumption Geometric Mean 1.7499 1.4000 1.7000
MILR (Type II) � Collective Assumption Arithmetic Mean 1.2500 1.6000 1.3000

Algorithms based on distance

Algorithm Configuration characteristics Ranking1

Filter type Acc Se Sp

MIOptimalBall (Type I) � Implements no normalization/standardization 1.7500 1.9500 2.0000
MIOptimalBall (Type II) Implements standardize training data 1.9000 2.1000 1.9500
MIOptimalBall (Type III) Implements normalized training data 2.3500 1.9500 2.0500

Algorithms based on support vector machines

Algorithm Configuration characteristics Ranking1

Kernel Minimax for feature space Acc Se Sp

MISMO (Type I) � RBF Kernel Do not make use of MIMinimax feature space 1.7500 2.1999 2.1500
MISMO (Type II) Polynomial Kernel Do not make use of MIMinimax feature space 2.5000 1.7500 3.2500
MISMO (Type III) RBF Kernel Make use of MIMinimax feature space 3.3500 3.2500 2.4500
MISMO (Type IV) Polynomial Kernell Make use of MIMinimax feature space 2.4000 2.8000 2.1500

Algorithms based on supervised learning (Wrapper)

Algorithm Configuration characteristics Ranking1

Classifier Method for testing Acc Se Sp

PART (Type I) PART learning Arithmetic Average of instance-level class probabilities 1.7000 1.4999 2.6500
PART (Type II) � PART learning Geometric Average of instance-level class probabilities 1.4000 1.5000 2.3500
PART (Type III) PART learning Maximum probability of positive bag 2.9000 2.9999 0.9999
Bagging& PART (Type I) Bagging with PART learning Arithmetic Average of instance-level class probabilities 1.5000 1.5499 2.5000
Bagging& PART (Type II) � Bagging with PART learning Geometric Average of instance-level class probabilities 1.5000 1.4500 2.5000
Bagging & PART (Type III) Bagging with PART learning Maximum probability of positive bag 2.9999 2.9999 0.9999
AdaBoost & PART (Type I) � AdaBoost with PART learning Arithmetic Average of instance-level class probabilities 1.3499 1.4500 2.5000
AdaBoost & PART (Type II) AdaBoost with PART learning Geometric Average of instance-level class probabilities 1.7000 1.5499 2.5000
AdaBoost & PART (Type III) AdaBoost with PART learning Maximum probability of positive bag 2.9499 2.9999 0.9999
SMO (Type I) � SMO learning with PolyKernel kernel Arithmetic Average of instance-level class probabilities 1.6500 1.4500 2.5000
SMO (Type II) SMO learning with PolyKernel kernel Geometric Average of instance-level class probabilities 1.7999 1.7499 2.2000
SMO (Type III) SMO learning with PolyKernel kernel Maximum probability of positive bag 2.5500 2.8000 1.3000
NaiveBayes (Type I) NaiveBayes learning Arithmetic Average of instance-level class probabilities 1.9500 1.7000 2.2000
NaiveBayes (Type II) � NaiveBayes learning Geometric Average of instance-level class probabilities 1.9500 1.4000 2.6999
NaiveBayes (Type III) NaiveBayes learning Maximum probability of positive bag 2.1000 2.8999 1.0999

Algorithms based on supervised learning (Simple)

Algorithm Configuration characteristics Ranking1

Classifier Transform method Acc Se Sp

AdaBoost & PART (Type I) � AdaBoost.M1 with PART learning Arithmetic per-bag mean of each attribute 1.7500 1.7000 1.9000
AdaBoost & PART (Type II) AdaBoost.M1 with PART learning Geometric per-bag mean of each attribute 2.5500 2.2500 2.3000
AdaBoost & PART (Type III) AdaBoost.M1 with PART learning Per-bag minimum and maximum of each attribute 1.7000 2.0500 1.8000
PART (Type I) � PART learning Arithmetic per-bag mean of each attribute 1.7000 1.8500 1.7500
PART (Type II) PART learning Geometric per-bag mean of each attribute 2.4500 2.1999 2.2500
PART (Type III) PART learning Per-bag minimum and maximum of each attribute 1.8499 1.9499 2.0000

Algorithms based on supervised learning (Boost)

Algorithm Configuration characteristics Ranking1

Classifier Maximum number of iterations Acc Se Sp

MIBoost (Type I) RepTree learning Fifty iterations of boost 2.0500 2.5500 2.5000
MIBoost (Type II) � RepTree learning Ten iterations of boost 2.0000 2.1500 2.8000
MIBoost (Type III) DecisionStump learning Fifty iterations of boost 2.6500 2.4000 2.3000
MIBoost (Type IV) DecisionStump learning Ten iterations of boost 3.3000 2.9000 2.4000

1 Ranking obtaining by the algorithm for executions over all ten data sets.
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simple algorithms, the support vector machine (MISMO), a method based on boosting (MIBoost) and diverse density (MIDD).
The Bonferroni–Dunn test results consider that the rest of the algorithms are enough far away for there to be significant dif-
ferences among them. In this study, our proposal is seen to obtain the best results in different data sets. The closest algo-
rithms are the wrapper methods based on different learners.



Table 4
Results of Friedman test (p = 0.01).

Algorithm Friedman value v2 Value Conclusion

MILR Acc 2.4999 6.6349 Accept null hypothesis
Se 0.4000 6.6349 Accept null hypothesis
Sp 1.6000 6.6349 Accept null hypothesis

MIOptimalBall Acc 1.9500 9.2104 Accept null hypothesis
Se 0.1500 9.2104 Accept null hypothesis
Sp 0.0499 9.2104 Accept null hypothesis

MISMO Acc 7.7700 11.3449 Accept null hypothesis
Se 7.8299 11.3449 Accept null hypothesis
Sp 4.8599 11.3449 Accept null hypothesis

PART (Wrapper) Acc 12.5999 9.2104 Reject null hypothesis
Se 15.0499 9.2104 Reject null hypothesis
Sp 15.4500 9.2104 Reject null hypothesis

Bagging & PART (Wrapper) Acc 14.9999 9.2104 Reject null hypothesis
Se 15.0499 9.2104 Reject null hypothesis
Sp 15.0000 9.2104 Reject null hypothesis

AdaBoost & PART (Wrapper) Acc 14.1499 9.2104 Reject null hypothesis
Se 15.0499 9.2104 Reject null hypothesis
Sp 15.0000 9.2104 Reject null hypothesis

SMO (Wrapper) Acc 4.6499 9.2104 Accept null hypothesis
Se 10.049 9.2104 Reject null hypothesis
Sp 7.8000 9.2104 Accept null hypothesis

NaiveBayes (Wrapper) Acc 0.1500 9.2104 Accept null hypothesis
Se 12.5999 9.2104 Reject null hypothesis
Sp 13.3999 9.2104 Reject null hypothesis

AdaBoost & PART (Simple) Acc 3.1500 9.2104 Accept null hypothesis
Se 0.6499 9.2104 Accept null hypothesis
Sp 1.2500 9.2104 Accept null hypothesis

PART (Simple) Acc 4.5500 9.2104 Accept null hypothesis
Se 1.5500 9.2104 Accept null hypothesis
Sp 1.4000 9.2104 Accept null hypothesis

MIBoost Acc 6.6900 11.3449 Accept null hypothesis
Se 1.7700 11.3449 Accept null hypothesis
Sp 0.8400 11.3449 Accept null hypothesis
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Fig. 5b shows the application of the Bonferroni–Dunn posthoc test with respect to the measurement for sensitivity. The
threshold in this case is 10.345. Observing this figure, the algorithms that do not exceed the threshold determined by Bon-
ferroni are mainly any wrapper or simple versions, algorithms based on distance (CitationkNN and OptimallBall), MIBoost
and diverse density (MIDD, MDD). The Bonferroni–Dunn test results consider the rest of algorithms to be too far away to
show significant differences among them. In sensitivity values, again our proposal obtains the best results and there is a con-
siderable difference with respect to the second proposal. We can conclude that our proposal obtains the best values in dif-
ferent measurements, which does not occur with the rest of the techniques previously mentioned. Although some of them
considered that there were no significant differences with respect to the control algorithm in accuracy, clearly these algo-
rithms do yield worse results in sensitivity than the control algorithm. This simply highlights that our proposal is a reliable
technique, as it is the classifier with the best guarantee for determining correct classifications in any class.
5.3. Comprehensibility in the knowledge discovery process

As previously mentioned, our system generates a learner based on IF-THEN prediction rules which provide a natural
extension to knowledge representation. The procedure is made automatically, the input of the algorithm being the data
set and other configuration parameters of the algorithm (shown in Table 2) while the output is the best rule achieved in
the evolutionary process, whose representation is specified in Section 3.1.

The rules obtained are characterized by several desirable properties: they are simple, intuitive, easy to understand and
provide representative information. These qualities represent an advantage with respect to other algorithms that work as
black boxes, which provide an incomprehensible output. Thus, our system adds comprehensibility and clarity to the knowl-
edge discovery process, making it possible to classify new patterns quickly by means of the classifier generated. This can be
seen in the following examples where one example of each application domain has been selected. These examples show that
the rules allow an expert to understand which attributes are relevant and their intervals.



Table 5
Experimental results.

Datasets MutA MutB MutC Mus1 Mus2 ImgF ImgT ImgE EastW WestE

MISMO Acc 0.7000 0.8421 0.7842 0.8778 0.8400 0.5800 0.8250 0.7900 0.7500 0.6500
Se 0.3833 0.8833 0.7167 0.8250 0.8667 0.4100 0.7800 0.7500 0.7000 0.6000
Sp 0.8462 0.8231 0.8154 0.9200 0.8000 0.7500 0.8700 0.8300 0.8000 0.7000

MIOptimalBall Acc 0.7263 0.7421 0.7158 0.8000 0.7700 0.5300 0.6700 0.7750 0.7000 0.3000
Se 0.5500 0.6833 0.4500 0.9250 0.8333 0.7400 0.6500 0.8800 0.7000 0.3000
Sp 0.8077 0.7692 0.8385 0.7000 0.8050 0.3200 0.6900 0.6700 0.7000 0.3000

MILR Acc 0.7000 0.7105 0.7684 0.8778 0.8500 0.5600 0.7700 0.7800 0.6000 0.6000
Se 0.2000 0.2167 0.4333 0.8500 0.9167 0.4900 0.7400 0.6900 0.5000 0.7000
Sp 0.9308 0.9385 0.9231 0.9000 0.7500 0.6300 0.8000 0.8700 0.7000 0.5000

PART (Wrapper) Acc 0.8105 0.7895 0.8684 0.8444 0.8500 0.6500 0.8150 0.8050 0.5000 0.5500
Se 0.5667 0.7000 0.7500 0.8750 0.8833 0.6100 0.8300 0.7300 0.5000 0.7000
Sp 0.9231 0.8308 0.9231 0.8200 0.8000 0.6900 0.8000 0.8800 0.5000 0.4000

Bagging & PART (Wrapper) Acc 0.8105 0.7789 0.8684 0.9000 0.8500 0.6900 0.8100 0.8600 0.6000 0.5500
Se 0.5833 0.7167 0.7833 0.8500 0.8667 0.6400 0.8000 0.7900 0.5000 0.6000
Sp 0.9154 0.8077 0.9077 0.9400 0.8250 0.7400 0.8200 0.9300 0.7000 0.5000

AdaBoost & PART (Wrapper) Acc 0.8053 0.7737 0.8737 0.8778 0.9000 0.6900 0.8000 0.8400 0.5000 0.6000
Se 0.5333 0.7000 0.7667 0.8750 0.9167 0.6100 0.8000 0.7800 0.4000 0.6000
Sp 0.9308 0.8077 0.9231 0.8800 0.8750 0.7700 0.8000 0.9000 0.6000 0.6000

SMO (Wrapper) Acc 0.6842 0.6842 0.6895 0.8444 0.8900 0.6350 0.8000 0.8550 0.5500 0.5000
Se 0.0000 0.0000 0.0167 0.8250 0.9333 0.4800 0.7700 0.8000 0.6000 0.8000
Sp 1.0000 1.0000 1.0000 0.8600 0.8250 0.7900 0.8300 0.9100 0.5000 0.2000

NaiveBayes (Wrapper) Acc 0.6842 0.6263 0.5263 0.8000 0.7700 0.5900 0.7650 0.8400 0.5000 0.6000
Se 0.0000 0.1500 0.9667 0.8000 0.7667 0.2700 0.8800 0.7700 0.5000 0.6000
Sp 1.0000 0.8462 0.3231 0.8000 0.7750 0.9100 0.6500 0.9100 0.5000 0.6000

PART (Simple) Acc 0.7000 0.8263 0.7737 0.8111 0.7400 0.5800 0.7650 0.7800 1.0000 1.0000
Se 0.4833 0.8333 0.5833 0.8000 0.7833 0.6200 0.8100 0.7600 1.0000 1.0000
Sp 0.8000 0.8231 0.8615 0.8200 0.6750 0.5400 0.7200 0.8000 1.0000 1.0000

AdaBoost & PART (Simple) Acc 0.7526 0.8474 0.7947 0.8333 0.7900 0.6250 0.7950 0.8100 0.9500 0.8500
Se 0.5167 0.8333 0.6667 0.8250 0.8500 0.6200 0.8100 0.8200 0.9000 0.8000
Sp 0.8615 0.8538 0.8538 0.8400 0.7000 0.6300 0.7800 0.8000 1.0000 0.9000

MIBoost Acc 0.8316 0.7737 0.8474 0.8778 0.8700 0.6950 0.8200 0.8150 0.6000 0.5000
Se 0.7333 0.7333 0.7333 0.8000 0.9000 0.6300 0.8000 0.7400 0.5000 0.6000
Sp 0.8769 0.7923 0.9000 0.9400 0.8250 0.7600 0.8400 0.8900 0.7000 0.4000

MIEMDD Acc 0.7316 0.7211 0.7368 0.8889 0.9000 0.5900 0.7450 0.7300 0.4500 0.3000
Se 0.5000 0.4333 0.5000 0.8750 0.8833 0.3900 0.7100 0.7100 0.7000 0.3000
Sp 0.8385 0.8538 0.8462 0.9000 0.9250 0.7900 0.7800 0.7500 0.2000 0.3000

MIDD Acc 0.7263 0.7526 0.7684 0.9222 0.7300 0.6550 0.7400 0.8300 0.5000 0.2500
Se 0.4167 0.5593 0.5500 0.9500 0.9500 0.6200 0.7200 0.8300 0.7000 0.3000
Sp 0.8692 0.8615 0.8692 0.9000 0.4000 0.6900 0.7600 0.8300 0.3000 0.2000

MDD Acc 0.7211 0.7316 0.7684 0.7889 0.7400 0.7000 0.7550 0.8000 0.5500 0.5500
Se 0.1667 0.4000 0.5500 0.7750 0.8500 0.6300 0.7700 0.8200 0.8000 0.7000
Sp 0.9769 0.8846 0.8692 0.8000 0.5750 0.7700 0.7400 0.7800 0.3000 0.4000

CitationKNN Acc 0.7526 0.7316 0.7474 0.9444 0.8500 0.5000 0.5000 0.5000 0.5500 0.5500
Se 0.5833 0.4333 0.5167 0.9750 0.8667 1.0000 1.0000 1.0000 0.5000 0.7000
Sp 0.8308 0.8692 0.8538 0.9200 0.8250 0.0000 0.0000 0.0000 0.6000 0.4000

G3P-MI Acc 0.8526 0.8210 0.8105 0.9445 0.8800 0.7050 0.8700 0.8800 1.0000 0.8500
Se 0.8462 0.8462 0.9231 1.0000 0.7500 0.7900 0.9400 0.9300 1.0000 0.7000
Sp 0.8167 0.7833 0.7333 0.9000 0.9180 0.6200 0.8000 0.8300 1.0000 1.0000
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IF [(F11 6 �17.233) ^ (F148 6 �17.665) ^ (F107 6 �67.946) ^ (F26 > �21.367) ^ (F97 6 3.100) _
[(�17.665 < F148 6 5.884) ^ (F91 6 43.487) ^ (F29 > �120.881) ^ (F82 > �56.242) ^ (F97 6 �7.919)]
THEN The molecule is musky.
ELSE The molecule is not musky.

The previous rule is obtained for the Musk data set. This rule shows representative information about the problem of pre-
dicting if a molecule has the musky property. The attributes considered in the rule maintain information about the shape of
the moleculewhich is why the distance of 162 rays emanating from the origin of the molecule to the molecule surface is con-
sidered. In addition to these 162 shape features, the four domain-specific features also considered represent the position of
a designated atom (an oxygen atom) on the molecular surface. According to this initial information, the rule provides



Table 6
Average rankings of the algorithms.

Algorithm Ranking

Acc Se Sp

MISMO 7.40 9.35 7.35
MIOptimalBall I 12.50 8.95 13.20
MILR 10.15 11.45 6.70
MIEMDD 10.95 11.25 9.35
MIDD 9.35 8.30 10.35
MDD 10.75 9.80 9.75
CitationKNN 10.80 6.00 10.45
G3PMI 2.20 3.10 8.45
PART (Wrapper) 7.25 7.75 8.45
Bagging & PART (Wrapper) 5.25 7.35 5.85
AdaBoost & PART (Wrapper) 5.80 8.20 6.20
SMO (Wrapper) 10.00 10.45 5.45
NaiveBayes (Wrapper) 12.00 11.30 8.70
PART (Simple) 8.95 7.80 10.40
AdaBoost & PART (Simple) 6.70 6.75 8.85
MIBoost 5.95 8.20 6.50

Table 7
Global results of Friedman test (p = 0.01).

Friedman value v2 Value Conclusion

Acc 53.1882 30.5780 Reject null hypothesis
Se 31.5838 30.5780 Reject null hypothesis
Sp 28.9213 30.5780 Accept null hypothesis

Fig. 5. Bonferroni–Dunn test (p < 0.01).
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information about the geometric structure of the molecule to determine if it satisfies the property to be evaluated or not.
Thus, experts in the area can increase their knowledge about identifying or developing molecules with this property.

The next rule represents the most relevant attributes for identifying a tiger inside an image. In this problem, the infor-
mation about the image includes features of color, texture and the position of pixels in the image. Concretely, with respect
to color features, the information maintained is about Lab space color. With respect to texture features, contrast, anisotropy
and polarity are taken into consideration; with respect to position features are considered the coordinates (x,y) of the posi-
tion of the pixel. According to this initial information, the rule provides information about which descriptors of color, texture
and position should have a region of an image to contain a tiger. Experts in the area can obtain the main characteristics that
an image has to have in order to be able to recognize a tiger.

IF [atr-14 > 3.142] _ [(atr-1 > 1.048) ^ (atr-9 > 1.431)] _ [(atr-96 > 0.496) ^ ((atr-1 > 0.909) _ (atr-32 > 0.263)))] _
[[(atr-63 > 0.425) _ ((atr-1 > 0.909) ^ (atr-14 > 3.229))] _ (atr-32 > 0.263) _ (atr-147 > 2.952)]
THEN The image contains a tiger.
ELSE The image does not contain a tiger.

Finally, the last application domain is the East–West problem. In this case the information available concerns the physical
description of trains. Thus, the rule provides information about the size, charge and type of charge that will identify if a train
is eastbound or westbound.

IF [charge > � 0.056 ^ typeh 6 0.594 ^ typeo > 0.719] _ [(typen 6 0.0713 ^ charge > 0.606] _
[(0.827 P charge > 0.807)] _ [quantatype > 134.146)]
THEN It is east west.
ELSE It is not east west.

6. Conclusion

This paper presents G3P-MI, a grammar guided genetic programming algorithm for multiple-instance learning. Our pro-
posal is compared to the most important techniques previously designed for solving these problems, considering both the clas-
sical algorithms designed exclusively for this learning (DD algorithm and its variants) as well as adaptations of machine
learning algorithms (among others, we consider algorithms based on distance, support vector machines, ensembles, logistic
regression). All the proposals are tested in ten data sets which contemplate the diversity of domains where MIL has been applied
to date. Empirical studies on these characteristics are the greatest weak point of MIL, as most studies to date have empirically
compared only a few approaches and used very few data sets. Moreover, as all the information about data sets and partitions is
available, the results can be reproduced and any new study can demonstrate their efficacy and efficiency under the same con-
ditions in the resolution of these problems. Experimental results show that our algorithm obtains better results than other algo-
rithms in several applications with respect to accuracy, sensitivity and specificity. The Friedman test confirms these results
determining that there are significant differences between the methods with respect to sensitivity and accuracy. In the case
of specificity, this test cannot determine real differences between results. The post-test carried out to measure the differences
presented, the Bonferroni–Dunn test, proves our proposal to be the best for both accuracy and sensitivity. The other techniques
are found to be worse in either one measurement or the other, and so they do not classify one of the classes correctly. As well as
the outstanding results obtained by our proposal, another advantage is that it generates a rule-based system. This system pro-
vides a natural extension for knowledge representation and is simple, intuitive, modular, and easy to generate from data.

Although the results obtained are of great interest, we feel that the yield of the G3P-MI algorithm in solving multi-in-
stance problems could be improved in some ways. On the one hand it would be interesting to reduce the space dedicated
to features, thus facilitating the search for optimal solutions. For this reason it would be of special interest to study the appli-
cation of feature selection techniques in this learning. On the other hand, classification tasks deal with contrasted measure-
ments, which means that as one is optimized, the other decreases its values; therefore it would be of interest to approach the
solution from a multiobjective perspective to see if the results could be improved even further. Finally, it would be of interest
to also include some factor in the evaluation to measure the simplicity of the rules in order to optimize this factor while
maintaining the results.
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